Multi-scale Non-Rigid Point Cloud Registration Using Robust Sliced-Wasserstein Distance via Laplace-Beltrami Eigenmap
نویسندگان
چکیده
In this work, we propose computational models and algorithms for point cloud registration with non-rigid transformation. First, point clouds sampled from manifolds originally embedded in some Euclidean space RD are transformed to new point clouds embedded in Rn by Laplace-Beltrami(LB) eigenmap using the n leading eigenvalues and corresponding eigenfunctions of LB operator defined intrinsically on the manifolds. The LB eigenmap are invariant under isometric transformation of the original manifolds. Then we design computational models and algorithms for registration of the transformed point clouds in distribution/probability form based on the optimal transport theory which provides both generality and flexibility. Our methods use robust sliced-Wasserstein distance, which is the average of projected Wasserstein distance along different directions, and incorporate a rigid transformation to handle ambiguities introduced by the Laplace-Beltrami eigenmap. By going from smaller n, which provides a quick and robust registration (based on coarse scale features) as well as a good initial guess for finer scale registration, to a larger n, our method provides an efficient, robust and accurate approach for multi-scale non-rigid point cloud registration.
منابع مشابه
Sliced Wasserstein Distance for Learning Gaussian Mixture Models
Gaussian mixture models (GMM) are powerful parametric tools with many applications in machine learning and computer vision. Expectation maximization (EM) is the most popular algorithm for estimating the GMM parameters. However, EM guarantees only convergence to a stationary point of the log-likelihood function, which could be arbitrarily worse than the optimal solution. Inspired by the relation...
متن کاملMatching the LBO Eigenspace of Non-Rigid Shapes via High Order Statistics
A fundamental tool in shape analysis is the virtual embedding of the Riemannian manifold describing the geometry of a shape into Euclidean space. Several methods have been proposed to embed isometric shapes into flat domains, while preserving the distances measured on the manifold. Recently, attention has been given to embedding shapes into the eigenspace of the Laplace–Beltrami operator. The L...
متن کاملSliced-Wasserstein Autoencoder: An Embarrassingly Simple Generative Model
In this paper we study generative modeling via autoencoders while using the elegant geometric properties of the optimal transport (OT) problem and the Wasserstein distances. We introduce Sliced-Wasserstein Autoencoders (SWAE), which are generative models that enable one to shape the distribution of the latent space into any samplable probability distribution without the need for training an adv...
متن کاملConvergence of the point integral method for Laplace–Beltrami equation on point cloud
The Laplace–Beltrami operator, a fundamental object associated with Riemannian manifolds, encodes all intrinsic geometry of manifolds and has many desirable properties. Recently, we proposed the point integral method (PIM), a novel numerical method for discretizing the Laplace–Beltrami operator on point clouds (Li et al. in Commun Comput Phys 22(1):228–258, 2017). In this paper, we analyze the ...
متن کاملDeep Spectral Descriptors: Learning the point-wise correspondence metric via Siamese deep neural networks
A robust and informative local shape descriptor plays an important role in mesh registration. In this regard, spectral descriptors that are based on the spectrum of the Laplace-Beltrami operator have gained a spotlight among the researchers for the last decade due to their desirable properties, such as isometry invariance. Despite such, however, spectral descriptors often fail to give a correct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014